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DISCUSSION ACKNOWLEDGMENTS 

As now developed, the slice method is accurate enough 
for studies in liquid-drop nuclear fission. This is being 
done and preliminary results will be published shortly. 
With its extension to elliptical disks the method should 
also be useful for further calculations of the equilibrium 
shapes of liquid-drop nuclei with high angular momen
tum6,9 and for the dynamics of close binary stars. 

9 B . C. Carlson and Pao Lu, in Proceedings of the Rutherford 
Jubilee International Conference, Manchester, 1961, edited by 
J. B. Berks (Academic Press Inc., New York, 1961). 

I t is a pleasure to acknowledge the invaluable 
assistance of Joseph N. Vitale who programmed and 
computed, at the Yale Computer Center, all of the 
results of Tables I I and I I I and numerous other 
studies of the slice method mentioned in the text. I 
also thank Lois Frampton for programming the early 
work which appears in Table I. I also thank Professor 
R. L. Gluckstern who assisted in the analysis which 
led to the disk-disk interaction formula. 
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The radial distribution functions g for a classical electron gas computed using the Percus-Yevick (PY) 
equation, convolution hypernetted chain (CHNC) equation, and the Broyles-Sahlin (BS) method, have 
been compared with the Debye-Hiickel (DH) theory. The quantities E^U/Nkt and P^p/nkT have been 
computed from these g's. Computations have been made for values of 9 of 20, 10, 5, 3, and 1; 6 = kTa/q2, 
where a is the ion sphere radius. The PY and BS results show the best agreement, particularly at 0<3. 
The BS method has been of particular value in this study of a long-range potential. In the range of 6 studied, 
g never exceeds one, that is, there is no oscillatory behavior of g. 

I. INTRODUCTION 

IN a classical one-component fluid having an average 
number density n=N/V, where N is the number of 

particles and V the volume, the average number 
density n(r) about a given particle is, in general, not 
constant. The radial distribution function g(r) is the 
factor by which n{r) differs from n and is defined by 
n(r) = ng(r). As a result of the Maxwell-Boltzmann 
classical distribution law, g(r) may be written, in the 
limit as N approaches infinity, as1 

g(r)=V2Z-1 / • • • / e-ulhTdrr -drN, 

V 
(1) 

Z = / ••• e-ulkTdrv-drN, 

V 

where U is the potential energy. In the following, U 
will be assumed to be the sum of pair potentials <£(r). 

The radial distribution function is important because 
thermodynamic quantities can be calculated once g(r) 

* This research was supported in part by funds from the 
U. S. National Science Foundation. 

1 Terrell L. Hill, Introduction to Statistical Thermodynamics 
(Addison-Wesley Publishing Company, Inc., Reading, Massa
chusetts, 1960). 

and <j>(r) are known. Of particular interest here are the 
relations for the pressure and mean potential energy,1 

£ = U/NkT= 2rn(kT)-1 j <t>{r)g{r)rHr, (2) 

P~p/nkT= \-2irn{ZkT)-1 / r*g(r) dr. 
Jo dr 

(3) 

U/N, the mean potential energy per particle, is often 
referred to as the correlation energy. 

A direct evaluation of Eq. (1) to determine g is not 
practical and, consequently, several approximate 
methods have been developed; there are four methods 
which are of interest here. Using a collective coordinate 
technique Percus and Yevick2 formed an integral equa
tion (PY) for g. A second integral equation was ob
tained by a summation procedure of Mayer-type 
diagrams and has been given the name convolution 
hypernetted chain equation (CHNC).3 A third method, 

2 J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958); 
J. K. Percus, Phys. Rev. Letters 8, 462 (1962); J. L. Lebowitz 
and J. K. Percus, J. Math. Phys. 4, 116 (1963). 

3 E. Meeron, J. Math. Phys. 1, 192 (1960); T. Morita, Progr. 
Theoret. Phys. (Kyoto) 23, 385 (1960); J. M. J. Van Leeuwen, 
J. Groeneveld, and J. DeBoer, Physica 25, 792 (1959); M. S. 
Green, Tech. Rept. Hughes Aircraft Corporation (unpublished). 
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the Broyles-Sahlin4 method (BS), separates the pair 
potential into a sum of a long and short range part. The 
g corresponding to the short-range part is calculated 
using an equation such as the PY or CHNC. With the 
g thus obtained, the BS method permits the calculation 
of the g corresponding to the original pair potential. 
The fourth method, Debye-Hiickel (DH), applies only 
to Coulomb interactions.5 This theory provides an 
explicit equation for g which is valid for low densities 
and high temperatures. In spite of the limited range of 
the D H theory, it is important because it is relatively 
simple to use. 

Similar calculations have already been made com
paring integral equations for g for a short-range 
(Lennard-Jones) potential.6 Here we extend the com
putations and comparisons to a long-range interaction, 
the Coulomb interaction. 

II. THE CLASSICAL ELECTRON GAS 

We consider a system of particles of the same charge 
imbedded in a neutralizing uniform background of 
charge of opposite sign. I t is convenient to choose as 
the unit of length the ion sphere radius a given by 

a=t3/(4:irn)J* (4) 

and to define a dimensionless parameter 6 by 

6=kTa/q2. (5) 

For the system considered and in terms of 6 with a as 
the unit of length, Eqs. (2) and (3) are specialized to 

(9) 

Jo 
E=3(2d)-U r f c ( r ) - l ] d r , 

i. j P = l + ( 2 e ) - 1 / r[g{r)-Y]dr. 

(6) 

(7) 

From (6) and (7) it is seen that 

P = l + i E . (8) 

The relationship (8) also follows directly from the 
virial theorem. The — 1 in [_g— 1] in (6) and (7) comes 
from the uniform background. 

III. THE EQUATIONS AND NUMERICAL 
SOLUTIONS 

The PY and CHNC integral equations may be 
written in the form6 

H(r) 
JQ J t=\s-r\ 

I(t)G(s)dtds\ 

4 A. A. Broyles and H. L. Sahlin, Bull. Am. Phys. Soc. 8, 32 
(1963); A. A. Broyles, H. L. Sahlin, and D. D. Carley, Phys. Rev. 
Letters 10, 319 (1963). 

5 P. Debye and E. Htickel, Physik. Z. 24, 185 (1923). 
« A. A. Broyles, S. U. Chung, and H. L. Sahlin, J. Chem. Phys. 

37, 2462 (1962). 

G(r) = r ( l - £ ) ; 

I(r) = H-r(g~l); 

g M = ( l + # A ) e x p [ - 0 M ] , (PY) 

g(r) = exV(H/r) e x p [ - 0 ( r ) ] , (CHNC). 

The iteration procedure used to solve Eq. (9) is dis
cussed in Ref. 6. 

For the Coulomb problem the basic equation of the 
BS method is 

F(k) = 3-
3F**(k)+l 

^ - 2 3 r 1 $ l r ( ^ ) [ 3 ^ s r ( ^ ) + l ] + l 
- 1 (10) 

/ W = ^ W " 1 is the correlation function. 
The functions of k are transforms of the functions of 

r and are denoted by the corresponding capital letters, 
so that 

1 r°° 
F(k) = - rsin(kr)f(r)dr 

kJo 
(ID 

2 1 /•« 
/ ( , ) = - - / ksin(kr)F(k)dk. 

7T rJo 
(12) 

The superscript sr refers to short range and lr to long 
range. 

The g's for the BS method were calculated in the 
following manner. The potential was separated into 
two parts: 

0(r) = 0 s r ( r )+0 l r ( f ) , 

0 s r = g 2 ( r - l _ r c - l ^ 0 l r = g V f l - l f o r T<TCj ( 1 3 ) 

<£sr=0 ^ g V - i for r>rc. 

The radial distribution function g8T was calculated using 
<j)8F in the PY or CHNC equation. Having thus obtained 
gsr, g was readily obtained using Eqs. (10)-(13). The 
computations were carried out on an IBM 709 digital 
computer. H. L. Sahlin has pointed out that if we take 
r c = 0 , then we get 

g(r) = 1 - (r0)-i exp[ - r (3 /^ ) 1 / 2 ] . (14) 

This is the linearized Debye-Hiickel solution. [Compare 
with Eq. (15).] 

The equation from Debye-Hiickel theory is an 
explicit equation for g. In our system of units it is 

g(r) = exp{- (rd)-1 exp[ - r (3 /0) 1 / 2 ]} . (15) 

A comparison of the four approximations may be 
made by looking at the forms of the direct correlation 
function C(f). The correlation function / ( f ) and direct 
correlation function are related by the Ornstein and 
Zernicke equation 

f(f) = C(f)+nJ f(s)C(s-f)ds. (16) 

In the respective methods, the direct correlation func-
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tion is given by 

C(r)=-(j) (r)/kT, D H (linearized) 

C(r) = g(r)-l-lng(r)-$(r)/kT, CHNC 

C(f) = [ l - e x p ( 0 ( r ) / * r ) ] g ( r ) , PY 

c ( f ) = C " ( r ) - 0 l r ( f ) / * r , B S . 

I t is interesting to compare the form C(r) of the BS 
method with that of the D H (linearized). I t should be 
re-emphasized that our D H calculations were carried 
out using Eq. (15) and not the linearized form of 
Eq. (14). 

IV. DISCUSSION OF RESULTS 

The computed g's are listed in Tables I through V. 
The quantity — E was computed from Eq. (6) by nu
merical integration and the results are listed in Table VI. 
The quantity P was then determined using (8) and the 
results are given in Fig. 1. In the Tables we have 
generally followed the custom of retaining one un
certain figure. I t is unfortunate that small errors in g 
tend to be magnified into rather large errors in E, par
ticularly at the higher 0's. 

I t should be noted that g is negative for some values 
of r in the BS method. This failure at small r is char-

TABLE I. Radial distribution function for 0 = 20.0. 

Radial distribution function 

r/a 

0.00 
0.05 
0.01 
0.15 
0.20 
0.30 
0.40 
0.50 
1.00 
1.50 
2.00 
2.50 

DH 

0.000 
0.375 
0.618 
0.730 
0.793 
0.862 
0.898 
0.921 
0.966 
0.982 
0.988 
0.992 

CHNC 

0.000 
0.375 
0.621 
0.734 
0.798 
0.867 
0.904 
0.926 
0.971 
0.985 
0.991 
0.994 

PY 

0.000 
0.375 
0.621 
0.734 
0.798 
0.867 
0.904 
0.926 
0.971 
0.985 
0.991 
0.994 

BS 
(rc = 2.34a) 

0.000 
0.368 
0.614 
0.727 
0.791 
0.860 
0.897 
0.920 
0.966 
0.981 
0.988 
0.992 

TABLE II. Radial distribution function for 0 = 10.0. 

Radial distribution function 

r/a 

0.00 
0.05 
0.10 
0.15 
0.20 
0.30 
0.40 
0.50 
1.00 
1.50 
2.00 
2.50 

DH 

0.000 
0.143 
0.388 
0.541 
0.639 
0.753 
0.818 
0.859 
0.944 
0.971 
0.983 
0.990 

CHNC 

0.000 
0.146 
0.394 
0.550 
0.649 
0.766 
0.831 
0.872 
0.954 
0.979 
0.989 
0.994 

PY 

0.000 
0.146 
0.393 
0.549 
0.648 
0.765 
0.830 
0.870 
0.953 
0.978 
0.989 
0.994 

BS 
(rc = 2.34a) 

0.000 
0.135 
0.380 
0.534 
0.633 
0.749 
0.814 
0.856 
0.942 
0.970 
0.983 
0.990 

acteristic of the collective coordinate approach as used 
in the BS method. However, the error in P and E is 
negligible because the error in g is small and because r 
is small in the region of error [see Eq. (6)]. 

We note that at 0=20 the g's are nearly the same for 
all methods. The small differences may not be significant 
because of the errors introduced in the numerical com
putations. However, at the other extreme, the dif
ferences in the g's for 6= 1 are very significant. We find 
the PY and BS g's nearly the same, but in disagreement 
with CHNC and DH. For reasons discussed in Ref. 4, 

TABLE III. Radial distribution function for 0 = 5.0. 

Radial distribution function 

r/a 

0.00 
0.05 
0.10 
0.15 
0.20 
0.30 
0.40 
0.50 
1.00 
1.50 
2.00 
2.50 

DH 

0.000 
0.021 
0.157 
0.305 
0.424 
0.589 
0.693 
0.762 
0.912 
0.959 
0.979 
0.988 

CHNC 

0.000 
0.024 
0.164 
0.317 
0.441 
0.612 
0.718 
0.788 
0.933 
0.974 
0.988 
0.995 

PY 

0.000 
0.024 
0.162 
0.314 
0.436 
0.606 
0.711 
0.781 
0.929 
0.971 
0.987 
0.994 

BS 
(rc = 2.34a) 

0.000 
0.014 
0.147 
0.293 
0.412 
0.577 
0.681 
0.752 
0.907 
0.957 
0.978 
0.988 

TABLE IV. Radial distribution function for 0 = 3.0. 

Radial distribution function 

r/a 

0.00 
0.05 
0.10 
0.15 
0.20 
0.30 
0.40 
0.50 
1.00 
1.50 
2.00 
2.50 

DH 

0.000 
0.002 
0.049 
0.147 
0.255 
0.439 
0.572 
0.667 
0.884 
0.952 
0.978 
0.989 

CHNC 

0.000 
0.000 
0.037 
0.128 
0.236 
0.432 
0.579 
0.685 
0.914 
0.972 
0.990 
0.996 

PY 

0.000 
0.000 
0.035 
0.120 
0.223 
0.410 
0.553 
0.658 
0.896 
0.964 
0.986 
0.994 

BS 
(rc = 2.34a) 

0.000 
0.003 
0.026 
0.104 
0.198 
0.373 
0.510 
0.613 
0.863 
0.944 
0.976 
0.989 

we believe that the BS method is providing a good ap
proximation to g in the range of 6 presented here. 

The BS method offers certain computational ad
vantages. In calculating g by means of the CHNC or 
PY equations, computational errors are dependent upon 
the interval spacing and range of the numerical inte
gration. For a long-range potential such as the Coulomb 
potential, the effect of terminating the integration at a 
finite point is particularly important. Near the termi
nation point the error in g is large, but diminishes as r 
decreases. In the CHNC and PY equations it is neces
sary to choose an integration range of r much larger than 
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the range in which one is interested because a portion 
near the cutoff, where the error is large, must be dis
carded. This is important since the computation time 
increases very rapidly with the range of integration. 
In computing gaT we use a short-range potential which 
is zero beyond rc and the effect of terminating the inte
gration at a finite point is no longer important. Thus, 
almost the entire range of gST is available for use in the 
BS procedure; this results in a considerable saving in 
computer time. 

TABLE V. Radial distribution function for (9=1.0. 

Radial distribution function 

r/a 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 
1.50 
2.00 
2.50 

DH 

0.000 
0.000 
0.029 
0.137 
0.286 
0.431 
0.554 
0.653 
0.731 
0.791 
0.838 
0.951 
0.984 
0.995 

CHNC 

0.000 
0.000 
0.034 
0.163 
0.335 
0.498 
0.632 
0.734 
0.810 
0.864 
0.903 
0.982 
0.996 
0.999 

PY 

0.000 
0.000 
0.020 
0.100 
0.221 
0.351 
0.470 
0.574 
0.661 
0.732 
0.789 
0.940 
0.984 
0.996 

BS 
(r„= 1.87a) 

0.000 
0.000 
0.012 
0.083 
0.193 
0.315 
0.433 
0.538 
0.629 
0.704 
0.767 
0.936 
0.985 
0.994 

TABLE VI. - £ = - U/NkT as a function of 6. 

-E 

e 
20 
10 
5 
3 
1 

DH 

0.00935 
0.0252 
0.0659 
0.129 
0.468 

CHNC 

0.008 
0.019 
0.0483 
0.0976 
0.328 

PY 

0.008 
0.020 
0.0509 
0.111 
0.539 

BS 

0.0094 
0.0258 
0.0688 
0.144 
0.577 

Abe 

0.00988 
0.0257 
0.0685 
0.139 
0.624 

E and P as calculated from the BS g show close agree
ment with results from Abe's7 work. The values of E 
listed in Table VI under "Abe" are approximate 
numbers obtained from interpolation of the values 
listed by Trulio and Brush.8 With the possible exception 
of 0= 1, the differences are not significant; i.e., E as cal
culated by the BS method and the Abe method are the 
same within the accuracy of our calculations. 

7 R. Abe, Progr. Theoret. Phys. (Kyoto) 22, 213 (1959). 
8 J. G. Trulio and S. G. Brush, Phys. Rev. 121, 940 (196i). 
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FIG. 1. The function P^p/nkT as a function of 6 for the 
PY, CHNC, BS, DH, and Abe theories. 

If we assume that the BS procedure gives nearly the 
correct results, then we may note the following points. 
First, the CHNC and PY equations give nearly the 
same results at high 0 but the PY equation is superior 
at lower 0. Second, in the range of 0 studied, the asymp
totic value of g for large r is simply the D H value. 
Third, in the range of 0 studied g does not exceed one, 
that is, there is no oscillatory behavior of g. Fourth, 
the D H theory gives good results for 0 equal to and 
greater than five. At 0 = 5 the error in E is only 4.2%. 

As 0 is lowered, the solutions to the integral equations 
(9) become more difficult to obtain; in our iterative 
procedure the convergence becomes slower and less 
stable. Preliminary results in these lower 0 regions indi
cate that g begins to exceed one and, hence, to show 
oscillatory behavior in the neighborhood of 0^0 .5 . We 
plan to study this interesting region of 0 further and are 
particularly interested in determining whether the BS 
method continues to be independent of rc over a range 
of cutoff values. 
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